23 research outputs found

    A Predictive Model for Steady State Ozone Concentration at an Urban-Coastal Site

    Get PDF
    Ground level ozone (O-3) plays an important role in controlling the oxidation budget in the boundary layer and thus affects the environment and causes severe health disorders. Ozone gas, being one of the well-known greenhouse gases, although present in small quantities, contributes to global warming. In this study, we present a predictive model for the steady-state ozone concentrations during daytime (13:00-17:00) and nighttime (01:00-05:00) at an urban coastal site. The model is based on a modified approach of the null cycle of O-3 and NOx and was evaluated against a one-year data-base of O-3 and nitrogen oxides (NO and NO2) measured at an urban coastal site in Jeddah, on the west coast of Saudi Arabia. The model for daytime concentrations was found to be linearly dependent on the concentration ratio of NO2 to NO whereas that for the nighttime period was suggested to be inversely proportional to NO2 concentrations. Knowing that reactions involved in tropospheric O-3 formation are very complex, this proposed model provides reasonable predictions for the daytime and nighttime concentrations. Since the current description of the model is solely based on the null cycle of O-3 and NOx, other precursors could be considered in future development of this model. This study will serve as basis for future studies that might introduce informing strategies to control ground level O-3 concentrations, as well as its precursors' emissions.Peer reviewe

    A Predictive Model for Steady State Ozone Concentration at an Urban-Coastal Site

    Get PDF
    Ground level ozone (O3) plays an important role in controlling the oxidation budget in the boundary layer and thus affects the environment and causes severe health disorders. Ozone gas, being one of the well-known greenhouse gases, although present in small quantities, contributes to global warming. In this study, we present a predictive model for the steady-state ozone concentrations during daytime (13:00–17:00) and nighttime (01:00–05:00) at an urban coastal site. The model is based on a modified approach of the null cycle of O3 and NOx and was evaluated against a one-year data-base of O3 and nitrogen oxides (NO and NO2) measured at an urban coastal site in Jeddah, on the west coast of Saudi Arabia. The model for daytime concentrations was found to be linearly dependent on the concentration ratio of NO2 to NO whereas that for the nighttime period was suggested to be inversely proportional to NO2 concentrations. Knowing that reactions involved in tropospheric O3 formation are very complex, this proposed model provides reasonable predictions for the daytime and nighttime concentrations. Since the current description of the model is solely based on the null cycle of O3 and NOx, other precursors could be considered in future development of this model. This study will serve as basis for future studies that might introduce informing strategies to control ground level O3 concentrations, as well as its precursors’ emissions

    A Predictive Model for Steady State Ozone Concentration at an Urban-Coastal Site

    Get PDF
    Ground level ozone (O3) plays an important role in controlling the oxidation budget in the boundary layer and thus affects the environment and causes severe health disorders. Ozone gas, being one of the well-known greenhouse gases, although present in small quantities, contributes to global warming. In this study, we present a predictive model for the steady-state ozone concentrations during daytime (13:00–17:00) and nighttime (01:00–05:00) at an urban coastal site. The model is based on a modified approach of the null cycle of O3 and NOx and was evaluated against a one-year data-base of O3 and nitrogen oxides (NO and NO2) measured at an urban coastal site in Jeddah, on the west coast of Saudi Arabia. The model for daytime concentrations was found to be linearly dependent on the concentration ratio of NO2 to NO whereas that for the nighttime period was suggested to be inversely proportional to NO2 concentrations. Knowing that reactions involved in tropospheric O3 formation are very complex, this proposed model provides reasonable predictions for the daytime and nighttime concentrations. Since the current description of the model is solely based on the null cycle of O3 and NOx, other precursors could be considered in future development of this model. This study will serve as basis for future studies that might introduce informing strategies to control ground level O3 concentrations, as well as its precursors’ emissions

    New particle formation, growth and apparent shrinkage at a rural background site in western Saudi Arabia

    Get PDF
    Atmospheric aerosols have significant effects on human health and the climate. A large fraction of these aerosols originates from secondary new particle formation (NPF), where atmospheric vapors form small particles that subsequently grow into larger sizes. In this study, we characterize NPF events observed at a rural background site of Hada Al Sham (21.802 degrees N, 39.729 degrees E), located in western Saudi Arabia, during the years 2013-2015. Our analysis shows that NPF events occur very frequently at the site, as 73 % of all the 454 classified days were NPF days. The high NPF frequency is likely explained by the typically prevailing conditions of clear skies and high solar radiation, in combination with sufficient amounts of precursor vapors for particle formation and growth. Several factors suggest that in Hada Al Sham these precursor vapors are related to the transport of anthropogenic emissions from the coastal urban and industrial areas. The median particle formation and growth rates for the NPF days were 8.7 cm(-3) s(-1) (J(7)(nm)) and 7.4 nm h(-1) (GR(7-12nm)), respectively, both showing highest values during late summer. Interestingly, the formation and growth rates increase as a function of the condensation sink, likely reflecting the common anthropogenic sources of NPF precursor vapors and primary particles affecting the condensation sink. A total of 76 % of the NPF days showed an unusual progression, where the observed diameter of the newly formed particle mode started to decrease after the growth phase. In comparison to most long-term measurements, the NPF events in Hada Al Sham are exceptionally frequent and strong both in terms of formation and growth rates. In addition, the frequency of the decreasing mode diameter events is higher than anywhere else in the world.Peer reviewe

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    Street Dust—Bound Polycyclic Aromatic Hydrocarbons in a Saudi Coastal City: Status, Profile, Sources, and Human Health Risk Assessment

    No full text
    Polycyclic aromatic hydrocarbons (PAHs) in street dust pose a serious problem threatening both the environment and human health. Street dust samples were collected from five different land use patterns (traffic areas TRA, urban area URA, residential areas REA, mixed residential commercial areas MCRA and suburban areas SUA) in Jeddah, a Saudi coastal city, and one in in Hada Al Sham, a rural area (RUA). This study aimed to investigate the status, profile, sources of PAHs and estimate their human health risk. The results revealed an average concentration of total PAHs of 3320 ng/g in street dust of Jeddah and 223 ng/g in RUA dust. PAHs with high molecular weight represented 83.38% of total PAHs in street dust of Jeddah, while the carcinogenic PAH compounds accounted 57.84%. The highest average concentration of total PAHs in street dust of Jeddah was found in TRA (4980 ng/g) and the lowest in REA (1660 ng/g). PAHs ratios indicated that the principal source of PAHs in street dust of Jeddah is pyrogenic, mainly traffic emission. Benzo(a)anthracene/chrysene (BaA/CHR) ratio suggests that PAHs in street dusts of Jeddah come mainly from emission of local sources, while PAHs in RUA might be transported from the surrounding urban areas. The estimated Incremental Lifetime Cancer Risk (ILCR) associated with exposure to PAHs in street dusts indicated that both dermal contact and ingestion pathways are major contributed to cancer risk for both children and adults. Based on BaPequivalence concentrations of total PAHs, ILCRIngestion, ILCRdermal and cancer risk values for children and adults exposed to PAHs in street dust of different areas in Jeddah were found between 10−6 and 10−4, indicating potential risk. The sequence of cancer risk was TRA > URA > MCRA > SUA > REA. Only exposure to BaP and DBA compounds had potential risk for both children and adults
    corecore